BipartiteEventStudy class
- class bipartitepandas.bipartiteeventstudy.BipartiteEventStudy(*args, col_reference_dict=None, col_collapse_dict=None, **kwargs)
Bases:
BipartiteEventStudyBase
Class for bipartite networks of firms and workers in event study form. Inherits from BipartiteEventStudyBase.
- Parameters
*args – arguments for BipartiteEventStudyBase
col_reference_dict (dict or None) – clarify which columns are associated with a general column name, e.g. {‘i’: ‘i’, ‘j’: [‘j1’, ‘j2’]}; None is equivalent to {}
col_collapse_dict (dict or None) – how to collapse column (None indicates the column should be dropped), e.g. {‘y’: ‘mean’}; None is equivalent to {}
**kwargs – keyword arguments for BipartiteEventStudyBase
- collapse(level='spell', is_sorted=False, copy=True)
Collapse event study data at the worker-firm spell level (so each spell for a particular worker at a particular firm becomes one observation).
- Parameters
level (str) – if ‘spell’, collapse at the worker-firm spell level; if ‘match’, collapse at the worker-firm match level (‘spell’ and ‘match’ will differ if a worker leaves then returns to a firm)
is_sorted (bool) – if False, dataframe will be sorted by i (and t, if included). Returned dataframe will be sorted. Sorting may alter original dataframe if copy is set to False. Set is_sorted to True if dataframe is already sorted.
copy (bool) – if False, avoid copy
- Returns
collapsed event study data generated by collapsing event study data at the worker-firm spell level
- Return type
- get_worker_m(is_sorted=False)
Get NumPy array indicating whether the worker associated with each observation is a mover.
- Parameters
is_sorted (bool) – if False, dataframe will be sorted by i in a groupby (but self will not be not sorted). Set to True if dataframe is already sorted.
- Returns
indicates whether the worker associated with each observation is a mover
- Return type
(NumPy Array)